LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Event-based lattice modeling of strain-hardening cementitious composites

Photo by terri_bleeker from unsplash

This paper presents novel developments in the lattice modeling of fiber reinforced cement composites, in which the individual fibers are explicitly represented. Attention is given to the modeling of strain-hardening… Click to show full abstract

This paper presents novel developments in the lattice modeling of fiber reinforced cement composites, in which the individual fibers are explicitly represented. Attention is given to the modeling of strain-hardening cement composites under tensile loading. The pullout forces of fibers are derived from micromechanical bases and distributed along the fiber embedment lengths. This spatial description of the fiber bridging forces provides realistic representations of stress transfer between the fiber and matrix, which is essential for simulating crack openings and crack spacing. Stress transfer is modified to account for multiple cracks intersecting individual fibers, which is typical for materials with closely spaced cracks. Multiple cracking generates islands of material interconnected by fiber bridges, which places extraordinary demands on the solution procedure. An event-by-event solution strategy is developed for this reason. Comparisons with test results demonstrate the model’s ability to simulate global and crack-local features. In particular, simulated histograms of crack opening displacement compare favorably with those measured experimentally.

Keywords: strain hardening; fiber; lattice modeling; modeling strain; event

Journal Title: International Journal of Fracture
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.