LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the description of ductile fracture in metals by the strain localization theory

Photo from wikipedia

Numerical simulations based on the bifurcation and imperfection versions of the strain localization theory are used in this paper to predict the failure loci of metals and applied to an… Click to show full abstract

Numerical simulations based on the bifurcation and imperfection versions of the strain localization theory are used in this paper to predict the failure loci of metals and applied to an advanced high strength steel subjected to proportional loading paths. The results are evaluated against the 3D unit cell analyses of Dunand and Mohr (J Mech Phys Solids 66(1):133–153, 2014. doi:10.1016/j.jmps.2014.01.008) available in the literature. The Gurson porous plasticity model (Gurson in J Eng Mater Technol 99(1):2–15, 1977. doi:10.1115/1.344340) is used to induce strain softening and drive the localization process. The effects of the void growth, void nucleation and void softening in shear are investigated over a large range of stress triaxialities and Lode parameters. A correlation between the imperfection and bifurcation results is established.

Keywords: fracture; strain localization; localization theory; description ductile; localization

Journal Title: International Journal of Fracture
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.