LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatial variation of nitrogen mineralization as a guide for variable application of nitrogen fertilizer to cereal crops

Photo from wikipedia

The site specific management of variable rate nitrogen (N) fertiliser application to crops is a cost-effective system that optimises outputs and reduces environmental impact. However, its implementation requires information on… Click to show full abstract

The site specific management of variable rate nitrogen (N) fertiliser application to crops is a cost-effective system that optimises outputs and reduces environmental impact. However, its implementation requires information on the spatial variability of soil and crop variables and, especially, of the N supply from the soil, measured as the available N and the N mineralized from organic matter. The objective of this study was to obtain the spatial structure of the variation of net N mineralization, within the field scale in a cereal cropping system, in order to improve site specific N management. A nested sampling survey was conducted in the field using scales of variation at 1.5, 4.5, 13.5, 40.5 and 121.5 m, arranged in hierarchical order with n = 96 samples. Samples were collected in autumn and spring and N mineralization measured by aerobic incubation. The components of variance of the N mineralized were calculated using residual maximum likelihood and used to produce an approach to the variogram. The within-field spatial variation was almost all (92–93%) encompassed by the scales of variation measured, all occurring within 40.5 m in both seasons. However, there was a significant amount of fine scale variation at 1.5 m in autumn and 4.5 m in spring. These results will guide future spatial sampling of the N supply, and soil monitoring in general.

Keywords: nitrogen; variation; application; cereal; mineralization; spatial variation

Journal Title: Nutrient Cycling in Agroecosystems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.