Experiments in fields and micro-plots were conducted to investigate the optimal cropping system and nitrogen (N) fertilizer application rate and timing. The treatments consisted of Chinese milk vetch–rice (CMV–R) rotation… Click to show full abstract
Experiments in fields and micro-plots were conducted to investigate the optimal cropping system and nitrogen (N) fertilizer application rate and timing. The treatments consisted of Chinese milk vetch–rice (CMV–R) rotation with five N fertilizer application rates (0, 120, 180, 240, 300 kg N ha−1) during the rice-growing season, and fallow–rice (F–R) and wheat–rice (W–R) rotations with only one N application rate (240 kg N ha−1) each. Rice yield increased with increasing N fertilizer application rate under CMV–R rotation, and achieved highest yield under CMV–R180. There is a decreasing trend when N application rate exceeded 180 kg N ha−1. Rice yield was always higher under CMV–R240 compared to W–R240 and F–R240. During the 2012 rice season, the fertilizer N-use efficiency, residual N fertilizer in soil and N fertilizer recovery efficiency of CMV–R180 reached largest under CMV–R rotation with different N treatments. Furthermore, the fertilizer N-use and recovery efficiencies of CMV–R240 and F–R240 were far higher than those of W–R240. In 2013, fertilizer N-use efficiency was the highest (> 50%) at the heading stage, which was nearly twice as much as the efficiencies during the basal and tillering stages. The N fertilizer loss rate during the basal stage was significantly higher than that at the tillering and heading stages, which was up to 60%. CMV–R rotation with 180 kg N ha−1 achieved the highest rice yield of 9454 kg ha−1 and high fertilizer N-use efficiency (40.6%) under a relatively lower N application rate. Therefore, Chinese milk vetch–rice cropping system could be a promising approach for decreasing fertilizer inputs to prevent N pollution problems and increasing rice yield, especially for the intensive rice-based cropping systems in southern China.
               
Click one of the above tabs to view related content.