As a part of the seismic safety evaluation of several bridges and other hydraulic structures located on Kasai River bed in India, the liquefaction potential of Kasai River sand is… Click to show full abstract
As a part of the seismic safety evaluation of several bridges and other hydraulic structures located on Kasai River bed in India, the liquefaction potential of Kasai River sand is studied in 1-g shake table in laboratory and numerically using a commercial software FLAC 2D. The surface settlement, lateral spreading, predominant frequency, amplification of the ground motion and pore water pressure development in Kasai River sand in dry and liquefied states have been studied when subjected to sinusoidal motions of amplitude 0.35 g at a frequency of 2 Hz. The nonlinear curves used to represent shear strain dependency of stiffness and damping ratio of Kasai River sand are obtained from cyclic triaxial tests. Reasonably good agreement between the experimental and the numerical results is observed. It is found that the settlement and lateral spreading for the liquefied sand is 2.60 and 2.50 times than those of the sand in the dry state. The volumetric strain of the liquefied sand is found to be around 4%, which is significantly higher than 1.53% observed in the dry sand. It is observed that the amplification of the peak ground acceleration for the saturated sand is 1.08 and 1.32 times higher than that for the dry sand from theoretical and experimental results, respectively. The shear strain developed in the liquefied sand is 1.17 times more than that for dry sand. The fundamental and higher modal frequencies of dry sand are found to be 1.13, 1.117 and 1.119 times more than those for the saturated sand, respectively.
               
Click one of the above tabs to view related content.