LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Construction of a Piled Mountain with Engineered Municipal Construction Waste over Soft Clay

Photo from wikipedia

Abstract The deformation mechanism of engineered municipal construction waste (EMCW) is complicated and different from that of the traditional soil. A series of field tests and field measurements were performed… Click to show full abstract

Abstract The deformation mechanism of engineered municipal construction waste (EMCW) is complicated and different from that of the traditional soil. A series of field tests and field measurements were performed on the piled mountain project to investigate the deformation characteristics of EMCW during the construction waste accumulation. Experimental studies revealed that EMCW was defined as a kind of heterogeneous soil with well-graded soil. The coefficients of uniformity were all greater than 10, while the coefficients of curvature were between 1 and 3. The permeability had approximately the same performance as the sandy gravel did. The field test results showed EMCW had the characteristics of small deformation and the time effect of loading. The p–s curves indicated that the bearing capacity of construction waste improved after 1 year’s filling. These phenomena were mostly caused by the complexity, diversity, and inhomogeneity of EMCW. According to the proposed control standards of settlement and lateral deformation, as a method of foundation treatment, EMCW was an effective way to build a large piled mountain on soft soil foundation.

Keywords: construction; construction waste; engineered municipal; piled mountain

Journal Title: Geotechnical and Geological Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.