Information extracted from social media has proven to be very useful in the domain of emergency management. An important task in emergency management is rapid crisis mapping, which aims to… Click to show full abstract
Information extracted from social media has proven to be very useful in the domain of emergency management. An important task in emergency management is rapid crisis mapping, which aims to produce timely and reliable maps of affected areas. During an emergency, the volume of emergency-related posts is typically large, but only a small fraction is relevant and help rapid mapping effectively. Furthermore, posts are not useful for mapping purposes unless they are correctly geolocated and, on average, less than 2% of posts are natively georeferenced. This paper presents an algorithm, called CIME, that aims to identify and geolocate emergency-related posts that are relevant for mapping purposes. While native geocoordinates are most often missing, many posts contain geographical references in their metadata, such as texts or links that can be used by CIME to filter and geolocate information. In addition, social media creates a social network and each post can be enhanced with indirect information from the post’s network of relationships with other posts (for example, a retweet can be associated with other geographical references which are useful to geolocate the original tweet). To exploit all this information, CIME uses the concept of context, defined as the information characterizing a post both directly (the post’s metadata) and indirectly (the post’s network of relationships). The algorithm was evaluated on a recent major emergency event demonstrating better performance with respect to the state of the art in terms of total number of geolocated posts, geolocation accuracy and relevance for rapid mapping.
               
Click one of the above tabs to view related content.