The CRISPR/Cas (Clustered regularly interspaced short palindromic repeats/ CRISPR associated protein 9) system was discovered in bacteria and archea as an acquired immune response to protect the cells from infection.… Click to show full abstract
The CRISPR/Cas (Clustered regularly interspaced short palindromic repeats/ CRISPR associated protein 9) system was discovered in bacteria and archea as an acquired immune response to protect the cells from infection. This technology has now evolved to become an efficient genome editing tool, and is replacing older gene editing technologies. This technique uses programmable sgRNAs to guide the Cas9 endonuclease to the target DNA location. sgRNA is a vital component of the CRISPR technology, since without it the Cas nuclease cannot reach to its target location. Over the years, many tools have been developed for designing sgRNAs, the details of which have been extensively reviewed here. It has proven to be a promising tool in the field of genetic engineering and has successfully generated many plant varieties with better and desirable qualities. In the present review, we attempted to collect,collate and summarize information related to the development of CRISPR/Cas9 system as a tool and subsequently into a technique having a wide array of applications in the field of plant genome editing in attaining desirable traits like resistance to various diseases, nutritional enhancement etc. In addition, the probable future prospects and the various bio-safety concerns associated with CRISPR gene editing technology have been discussed in detail.
               
Click one of the above tabs to view related content.