LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model Parameterization and PP-Wave Amplitude Versus Angle and Azimuth (AVAZ) Direct Inversion for Fracture Quasi-Weaknesses in Weakly Anisotropic Elastic Media

Photo by colinwatts from unsplash

Homogeneous isotropic or vertically transverse isotropic rocks containing a single set of aligned, vertical fractures exhibits an effective long-wavelength horizontally transverse isotropy (HTI) or orthorhombic anisotropy. The estimation for properties… Click to show full abstract

Homogeneous isotropic or vertically transverse isotropic rocks containing a single set of aligned, vertical fractures exhibits an effective long-wavelength horizontally transverse isotropy (HTI) or orthorhombic anisotropy. The estimation for properties of subsurface fractures has significant application in characterization of naturally fractured rocks. The purpose of this work is to demonstrate an approach of amplitude versus angle and azimuth (AVAZ) direct inversion for fracture characterization utilizing the observable wide-azimuth seismic reflection data in weakly anisotropic elastic media. The simplest single fracture system is HTI model. Much attention has been devoted to the weak-contrast and weak-anisotropy HTI model due to its significance for reservoir characterization. Treating the fractures as linear-slip interfaces, we begin with the derivation for perturbations of stiffness matrix at a planar weak-contrast interface separating two weakly anisotropic HTI half-spaces that share the same fracture normal, as a function of background elastic moduli and fracture parameters. Using the perturbation matrix and scattering function, we then derive a linearized PP-wave reflection coefficient of a weakly HTI medium in terms of P- and S-wave moduli, density, and fracture weaknesses, which builds a linearized relationship between the fracture parameters and reflection coefficient with the priority calculation for the azimuth of fracture normal based on the least square ellipse fitting method. Finally, we reformulate the reflectivity caused by weakness differences to parameterize the weaknesses for the so-called quasi-weaknesses and propose a method of Bayesian AVAZ direct inversion in seismic detection of subsurface fractures. Cauchy and Gaussian probability distribution are used for the a priori information of model parameters and the likelihood function, and the maximum a posteriori estimate of quasi-weaknesses is reasonably estimated with the nonlinear iteratively reweighted least squares algorithm. Synthetic and real data illustrate the applicability of the proposed AVAZ inversion method in fracture characterization.

Keywords: inversion; fracture; direct inversion; quasi weaknesses; weakly anisotropic; avaz direct

Journal Title: Surveys in Geophysics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.