LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The key role of magnetic fields in binary neutron star mergers

Photo from wikipedia

The first multimessenger observation of a binary neutron star (BNS) merger in August 2017 demonstrated the huge scientific potential of these extraordinary events. This breakthrough led to a number of… Click to show full abstract

The first multimessenger observation of a binary neutron star (BNS) merger in August 2017 demonstrated the huge scientific potential of these extraordinary events. This breakthrough led to a number of discoveries and provided the best evidence that BNS mergers can launch short gamma-ray burst (SGRB) jets and are responsible for a copious production of heavy r-process elements. On the other hand, the details of the merger and post-merger dynamics remain only poorly constrained, leaving behind important open questions. Numerical relativity simulations are a powerful tool to unveil the physical processes at work in a BNS merger and as such they offer the best chance to improve our ability to interpret the corresponding gravitational wave (GW) and electromagnetic emission. Here, we review the current theoretical investigation on BNS mergers based on general relativistic magnetohydrodynamics simulations, paying special attention to the magnetic field as a crucial ingredient. First, we discuss the evolution, amplification, and emerging structure of magnetic fields in BNS mergers. Then, we consider their impact on various critical aspects: (i) jet formation and the connection with SGRBs, (ii) matter ejection, r-process nucleosynthesis, and radioactively-powered kilonova transients, and (iii) post-merger GW emission.

Keywords: magnetic fields; neutron star; binary neutron; merger

Journal Title: General Relativity and Gravitation
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.