LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibiting of circ-TLK1 inhibits the progression of glioma through down-regulating PANX1 via targeting miR-17-5p.

Photo by axeleres from unsplash

Glioma remains the most common malignant tumors in the central nervous system and often has poor prognosis. In recent years, it has been gradually revealed that non-coding RNA effects glioma… Click to show full abstract

Glioma remains the most common malignant tumors in the central nervous system and often has poor prognosis. In recent years, it has been gradually revealed that non-coding RNA effects glioma progression. In this study, we aimed to investigate the significance of circular RNA TLK1 (Circ-TLK1) in predicting the survival of glioma patients as well as its role in glioma development via both in-vitro and in-vivo experiments. We found that Circ-TLK1 was conspicuously up-regulated in glioma tissues compared with adjacent normal tissues, and the up-regulated Circ-TLK1 was significantly correlated with glioma patients' larger tumor volume and higher grades. Functionally, Circ-TLK1 over-expression facilitated glioma growth, migration and invasion, inhibited cell apoptosis, and accelerated PANX1/MAPK/ERK expression, while Circ-TLK1 low expression had the opposite effects. In addition, bioinformatics analysis showed that miR-17-5p was a potential target of Circ-TLK1 and targeted at PANX1. Furthermore, through dual luciferase viability assay, Circ-TLK1 acted as a competing endogenous RNA by sponging miR-17-5p, which targeted and inhibited PANX1/MAPK/ERK expression. MiR-17-5p overexpression mitigated glioma progression, which was significantly inhibited with Circ-TLK1 upregulation. In conclusion, this study confirmed a novel axis of Circ-TLK1-miR-17-5p-PANX1 in modulating glioma development, providing more references for glioma diagnosis and targeted therapy.

Keywords: tlk1; circ tlk1; glioma; mir; progression

Journal Title: Journal of molecular histology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.