Osteoarthritis (OA) is a slow-progressing degenerative joint disease mainly characterized by progressive cartilage loss and subchondral bone remodeling. Osteopontin (OPN) is a matrix extracellular glyco-phosphoprotein capable of regulating the expression… Click to show full abstract
Osteoarthritis (OA) is a slow-progressing degenerative joint disease mainly characterized by progressive cartilage loss and subchondral bone remodeling. Osteopontin (OPN) is a matrix extracellular glyco-phosphoprotein capable of regulating the expression levels of multiple factors linked with OA pathogenesis. This study explores the upstream regulatory molecular mechanism of OPN on proliferation and apoptosis of human chondrocytes in OA. Chondrocytes were isolated from OA cartilage and identified by toluidine blue staining and immunofluorescent staining of type II collagen. An MTT assay was used for cell viability, and a BrdU assay was applied for DNA synthesis. Cell apoptosis was detected by a flow cytometry assay. A lncRNA MIAT/miR-181a-5p/OPN axis regulating OA chondrocyte proliferation and apoptosis were identified. miR-181a-5p directly targeted OPN and inhibited OPN expression in OA chondrocytes. miR-181a-5p overexpression inhibited OA chondrocyte viability, suppressed DNA synthesis, and promoted apoptosis. OPN overexpression exerted opposite effects on OA chondrocytes and significantly attenuated the roles of miR-181a-5p overexpression in OA chondrocytes. A total of six long non-coding RNAs (lncRNAs) were predicted to target miR-181a-5p, and MIAT was the most up-regulated in OA cartilage tissues among the six lncRNAs. Through direct targeting, MIAT inhibited miR-181a-5p expression. MIAT silencing inhibited cell viability, suppressed DNA synthesis, and promoted cell apoptosis. Moreover, miR-181a-5p inhibition partially reversed the effects of MIAT silencing on OA chondrocytes. The lncRNA MIAT/miR-181a-5p/OPN axis could modulate OA chondrocyte proliferation and apoptosis. The comprehensive function of this axis on OA requires further in vivo and clinical investigations.
               
Click one of the above tabs to view related content.