LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart

Photo by freestocks from unsplash

The development of a diabetic cardiomyopathy is a multifactorial process, and evidence is accumulating that defects in intracellular free calcium concentration [Ca2+]i or its homeostasis are related to impaired mechanical… Click to show full abstract

The development of a diabetic cardiomyopathy is a multifactorial process, and evidence is accumulating that defects in intracellular free calcium concentration [Ca2+]i or its homeostasis are related to impaired mechanical performance of the diabetic heart leading to a reduction in contractile dysfunction. Defects in ryanodine receptor, reduced activity of the sarcoplasmic reticulum calcium pump (SERCA) and, along with reduced activity of the sodium-calcium exchanger (NCX) and alterations in myofilament, collectively cause a calcium imbalance within the diabetic cardiomyocytes. This in turn is characterized by cytosolic calcium overloading or elevated diastolic calcium leading to heart failure. Numerous studies have been performed to identify the cellular, subcellular, and molecular derangements in diabetes-induced cardiomyopathy (DCM), but the precise mechanism(s) is still unknown. This review focuses on the mechanism behind DCM, the onset of contractile dysfunction, and the associated changes with special emphasis on hyperglycemia, mitochondrial dysfunction in the diabetic heart. Further, management strategies, including treatment and emerging therapeutic modalities, are discussed.

Keywords: heart; dysfunction diabetic; diabetic heart; contractile dysfunction; calcium

Journal Title: Heart Failure Reviews
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.