The objective was to evaluate the diagnosis of heart failure with preserved ejection fraction (HFpEF) using the biomarkers, growth differentiation factor-15 (GDF-15), galectin-3 (Gal-3), and soluble ST2 (sST2), and to… Click to show full abstract
The objective was to evaluate the diagnosis of heart failure with preserved ejection fraction (HFpEF) using the biomarkers, growth differentiation factor-15 (GDF-15), galectin-3 (Gal-3), and soluble ST2 (sST2), and to determine whether they can differentiate HFpEF from heart failure with reduced ejection fraction (HFrEF). Medline and Embase databases were searched with the terms diastolic heart failure or HFpEF, biomarkers, and diagnosis, limited to years 2000 to 2019. There were significantly and consistently higher levels of GDF-15, Gal-3, and sST2 in HFpEF compared to no heart failure. Importantly, the magnitude of the increase in GDF-15 or Gal-3 and possibly sST2,correlated with a greater degree of diastolic dysfunction. There were no significant differences between GDF-15, Gal-3, and sST2 in patients with HFpEF vs HFrEF. In the studies assessing these three biomarkers, BNP was significantly greater in heart failure than controls. Furthermore, BNP was significantly higher in HFrEF compared to HFpEF. The diagnostic utility of GDF-15, Gal-3, and sST2 compared to BNP was evaluated by comparing ROC curves. The data supports the contention that to distinguish HFpEF from HFrEF, an index is needed that incorporates GDF-15, Gal-3, or sST2 as well as BNP. The three biomarkers GDF-15, Gal-3, or sST2 can identify patients with HFpEF compared to individuals without heart failure but cannot differentiate HFpEF from HFrEF. BNP is higher in and is better at differentiating HFrEF from HFpEF. Indices that incorporate GDF-15, Gal-3, or sST2 as well as BNP show promise in differentiating HFpEF from HFrEF.
               
Click one of the above tabs to view related content.