LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and Mössbauer study of nanoparticles CoFe2O4 prepared by sol-gel auto-combustion and subsequent sintering

Photo by fabiooulucas from unsplash

Single-phased nanocrystalline Cobalt ferrite (CoFe2O4) have been synthesized by sol-gel auto-combustion method. The prepared sample was divided into four different samples (auto-combustion (S1), 400 ∘C (S2), 600 ∘C (S3), and… Click to show full abstract

Single-phased nanocrystalline Cobalt ferrite (CoFe2O4) have been synthesized by sol-gel auto-combustion method. The prepared sample was divided into four different samples (auto-combustion (S1), 400 ∘C (S2), 600 ∘C (S3), and 1000 ∘C (S4)). The effect of sintering temperature on the structure, and morphology, were subsequently evaluated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). The hyperfine Interactions of all samples were studied using Mössbauer Spectroscopy (MS). No significant changes noticed in lattice constant (a), and the crystallite size was found to increase with sintering temperature which can be attributed to the grain growth of the particles. SEM shows an increase in the grain size and crystallinity as the sintering temperature increases, and the particles are cubic-like for S4. The particle size of each sample was determined using TEM and were in the range of 10–70 nm for the first three samples S1, S2, and S3, and increased beyond the nano-sized limit for S4 sample. The 57Fe Mössbauer spectra at 295 K and 78 K showed two sets of magnetic hyperfine patterns for all the four samples, indicating the presence of Fe3+ in both A and B-sites, with superimposed doublet in each of S1 and S2 samples. This doublet shows a significant reduction in intensity with increasing the sintering temperature. The existence of the doublet at 78 K suggests that the blocking temperature is below 78 K temperature. From the intensity of the Fe3+ sites and assumed site occupancies of the Co2+ ions, it may be deduced that the paramagnetic doublet is associated with octahedral site.

Keywords: ssbauer; auto combustion; temperature; microscopy

Journal Title: Hyperfine Interactions
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.