LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Stable 0.2-THz Coaxial-Waveguide Gyrotron Traveling-Wave-Tube Amplifier with Distributed Losses

Photo from wikipedia

For high-power operation, a THz gyrotron traveling-wave-tube (gyro-TWT) amplifier must operate in a high-order waveguide mode to enlarge the transverse dimension of an interaction waveguide. However, a gyro-TWT amplifier operating… Click to show full abstract

For high-power operation, a THz gyrotron traveling-wave-tube (gyro-TWT) amplifier must operate in a high-order waveguide mode to enlarge the transverse dimension of an interaction waveguide. However, a gyro-TWT amplifier operating in a high-order waveguide mode is susceptible to spurious oscillations. To improve the device stability, in this study, we investigate the possibility of using a coaxial waveguide with distributed losses as the interaction structure. For the same required attenuation, all threatening oscillating modes can be suppressed using different combinations of losses of inner and outer cylinders. This provides flexibility in designing distributed losses when considering the ohmic loading of the interaction structure. We predict that the 0.2-THz gyro-TWT can stably produce a peak power of 14 kW with an efficiency of 23 %, a 3-dB bandwidth of 3.5 GHz, and a saturated gain of 50 dB for a 20-kV 3-A electron beam with a 5 % velocity spread and 1.0 velocity ratio.

Keywords: gyrotron traveling; coaxial waveguide; wave tube; distributed losses; traveling wave

Journal Title: Journal of Infrared, Millimeter, and Terahertz Waves
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.