LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Simulation of Nanofluid Flow in a Channel Using Eulerian–Eulerian Two-Phase Model

Photo from wikipedia

In this article, laminar forced convection heat transfer in two-dimensional channel is investigated numerically. This investigation provides significant insight into recognizing the key parameters affecting the properties of the second… Click to show full abstract

In this article, laminar forced convection heat transfer in two-dimensional channel is investigated numerically. This investigation provides significant insight into recognizing the key parameters affecting the properties of the second law of thermodynamics, Darcy friction factor, performance evaluation criterion (PEC) and heat transfer. Because changes in the volume fraction of nanoparticles are significant, the Eulerian–Eulerian two-phase model is considered to simulate nanofluid flow. To enhance heat transfer, single jet and twin jets of ethylene glycol–SiO2 nanofluid are used. The pure ethylene glycol flows from the channel inlet and mixes with the flow of single jet or twin jets. The effects of the number of jet injection (single or twin), the concentration of nanoparticles and inlet velocity of jets are assessed using computational fluid dynamics. Jet injection with constant heat flux can lead to decrease in the general thermal and increase in the frictional entropy generation rates. With jet injection into the ethylene glycol flow, Nusselt number, Darcy friction factor and PEC increase. The nanoparticles’ addition to ethylene glycol increases the heat transfer from the target surface.

Keywords: heat; eulerian two; phase model; eulerian eulerian; heat transfer; two phase

Journal Title: International Journal of Thermophysics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.