LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Many-Body Localization Transition in the Heisenberg Ising Chain

Photo by ramaissance from unsplash

In this paper, we use exact matrix diagonalization to explore the many-body localization (MBL) transition of the Heisenberg Ising spin-1/2 chain with nearest neighbor couplings and disordered external fields. It… Click to show full abstract

In this paper, we use exact matrix diagonalization to explore the many-body localization (MBL) transition of the Heisenberg Ising spin-1/2 chain with nearest neighbor couplings and disordered external fields. It demonstrates that the fidelity, magnetization and spin-spin space correlation can be used to characterize the many-body localization transition in this closed spin system which is also in agreement with previous analytical and numerical results. We test the properties for the middle third many-body eigenstates. It shows that for this model with random-field, the excited-state fidelity exhibits a pronounced drop at the transition and then gradually tends to be stable in the localized phase, the critical point and the final value of averaged fidelity are all size dependent. It demonstrates that disordered external fields drive the occurrence of the MBL transition. Moreover, we investigate the magnetization and spin-spin space correlation in this model to verify the conclusion we got and further explore the properties of ergodic phase and localized phase.

Keywords: transition heisenberg; transition; many body; heisenberg ising; body localization

Journal Title: International Journal of Theoretical Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.