We study the dissipative evolution of quantum entanglement and Gaussian interference power in the dynamical Casimir radiation generated in a superconducting waveguide. We consider the decoherence in the current experimental… Click to show full abstract
We study the dissipative evolution of quantum entanglement and Gaussian interference power in the dynamical Casimir radiation generated in a superconducting waveguide. We consider the decoherence in the current experimental studies, which are in the low temperature. We observe that lower temperature, smaller detuning and larger normalized amplitude can not only maintain the non-classical association of the system more effectively, but also increase the utilization of quantum resources. Moreover, most of the damping is placed on the second noise channel, the entanglement and Gaussian interference power maintain longer and better quality, and they are also more sensitive to other environmental parameters. In addition, the Gaussian interference power is always non-zero, which displays its robustness to the thermal noise and the dissipation.
               
Click one of the above tabs to view related content.