LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A fast and scalable approach for IoT service selection based on a physical service model

Photo from wikipedia

Information Systems (ISs) have become one of the crucial tools for various organizations in managing and coordinating business processes. Now we are entering the era of the Internet of Things… Click to show full abstract

Information Systems (ISs) have become one of the crucial tools for various organizations in managing and coordinating business processes. Now we are entering the era of the Internet of Things (IoT). IoT is a paradigm in which real-world physical things can be connected to the Internet and provide services through the computing devices attached. The IoT infrastructure is starting to be integrated with ISs thereby diminishing the boundaries between the physical world and the business IT systems. With the development of IoT technologies, the number of connected things and their available physical services are increasing rapidly. Thus, selecting an appropriate service that satisfies a user’s requirements from such services becomes a time-consuming challenge. To address this issue, we propose a Physical Service Model (PSM) as a common conceptual model to describe heterogeneous IoT physical services. PSM contains three core concepts (device, resource, and service) and specifies their relationships. Based on the proposed PSM, we define three types of Quality of Service (QoS) attributes and rate candidate services according to user requirements. To dynamically rate QoS values and select an appropriate physical service, we propose a Physical Service Selection (PSS) method that takes a user preference and an absolute dominance relationship among physical services into account. Finally, experiments are conducted to evaluate the performance of the proposed method.

Keywords: physical service; iot; service selection; service; service model

Journal Title: Information Systems Frontiers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.