LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A coupled mathematical model and experimental validation of oxygen transport behavior in the electro-slag refining process

Photo from wikipedia

AbstractElectro-slag refining process is widely employed in steel industry for the production of special alloys used in ocean, aeronautics, and nuclear industries. Because of the adverse effect on the ductility… Click to show full abstract

AbstractElectro-slag refining process is widely employed in steel industry for the production of special alloys used in ocean, aeronautics, and nuclear industries. Because of the adverse effect on the ductility of metal, it is critical to remove oxygen in the process. This study established a transient three-dimensional (3D) coupled mathematical model for understanding oxygen transport behavior in the electro-slag refining process. The finite volume method was invoked to simultaneously solve mass, momentum, energy, and species conservation equations. Using the magnetic potential vector, Maxwell’s equations were solved, during which the obtained Joule heating and Lorentz force were coupled with the energy and momentum equations, respectively. The movement of metal–slag interface was described through the application of the volume of fluid (VOF) technique. Additionally, an auxiliary metallurgical kinetic module was introduced to determine the electrochemical reaction rate. An experiment was then conducted to validate the model, where the predicted oxygen contents agreed with the measured data within an acceptable accuracy range. Oxygen redistribution in both fluids is clarified: its transport rate at the metal droplet–slag interface is approximately one order of magnitude larger than that at the metal pool–slag interface. Further, the oxygen content in the metal pool is shown to increase with time, while the content in the slag layer is decreased. In order to effectively remove the oxygen in the metal, one more positive electrode, which is more likely to react with the oxygen, is proposed to be added in the unit.Graphical abstractDistributions of the electric streamlines and the phase distribution at 151.25 s with a current of 1800 A

Keywords: slag; oxygen; slag refining; refining process

Journal Title: Journal of Applied Electrochemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.