The present research investigated the effect of pCO2 levels (C), seawater temperature (T), and nutrient availability (N) on the growth and physiochemical changes in Pyropia haitanensis. With nutrient enrichment, the… Click to show full abstract
The present research investigated the effect of pCO2 levels (C), seawater temperature (T), and nutrient availability (N) on the growth and physiochemical changes in Pyropia haitanensis. With nutrient enrichment, the interaction of higher pCO2 increased relative growth rates (RGR) by 105.9% when temperature increased (22 °C) compared with the control (lower T, lower C, and lower N: LTLCLN). The higher pCO2 decreased the Pm rates at the lower temperature (18 °C), yet displayed no interaction with higher T or N levels. The higher N increased dark respiration rate (Rd) at 18 °C. At 22 °C, higher pCO2 significantly enhanced the maximum ratio of (quantum yields (Fv/Fo) and the maximum quantum yield (ψpo), while it sharply decreased the absorption of photons per active reaction center (ABS/RC) and dissipation of energy fluxes (per RC) (DIo/RC). Higher temperature obviously reduced the Fv/Fo and ψpo under ambient CO2 level. The higher pCO2 significantly increased the phycoerythrin (PE) and phycocyanin (PC) contents, while higher temperature decreased the PE contents with elevated CO2 and declined the PC content regardless of CO2 condition. At lower nutrient condition, higher pCO2 increased Chl a content. Soluble carbohydrates (SC) and soluble protein (SP) content almost was unchanged among all treatments. Our findings indicate that nutrient availability may regulate photosynthetic mechanism to offset the negative effect of future ocean warming on P. haitanensis, thereby sustaining or increasing the biomass yield of the algae.
               
Click one of the above tabs to view related content.