PurposeCurrently, open systems are mainly used for cryopreservation of ovarian tissue, oocytes, and embryos, but there is a potential risk of contamination. This study was performed to assess ovarian tissue… Click to show full abstract
PurposeCurrently, open systems are mainly used for cryopreservation of ovarian tissue, oocytes, and embryos, but there is a potential risk of contamination. This study was performed to assess ovarian tissue cryopreservation by a closed vitrification system (Rapid-i vitrification system™), which is already used clinically for oocyte/embryo cryopreservation.MethodsOvaries of C57BL/6J mice were frozen and thawed by using the Rapid-i vitrification system™ (Rapid-i) followed by implantation into recipient mice. Hematoxylin-eosin staining was performed for histological examination of the frozen-thawed ovaries to assess follicle grade. Fertility after implantation of the ovaries was assessed from the live birth rate and the number of live pups.ResultsThere was no significant difference in grade 1 primary follicles between fresh ovaries (control group, 94.2 ± 2.9%) and frozen-thawed ovaries (Rapid-i group, 87.1 ± 1.8%). However, there was a significant decrease in grade 1 early and late secondary follicles in the Rapid-i group compared with the control group. The live-birth rate was significantly lower in the Rapid-i group compared with the control group (29.2 vs. 83.3%, p < 0.05). On the other hand, there was no significant difference in the average number of live pups between the control group and the Rapid-i group (3 ± 0.4 vs. 2.7 ± 0.3).ConclusionsThe Rapid-i seems to be effective for cryopreservation of mouse ovarian tissue. Under appropriate conditions, the Rapid-i could be employed for ovarian tissue cryopreservation and preservation of fertility in humans.
               
Click one of the above tabs to view related content.