Previously a fingerprint based on monomer composition (MCFP) of nonribosomal peptides (NRPs) has been introduced. MCFP is a novel method for obtaining a representative description of NRP structures from their… Click to show full abstract
Previously a fingerprint based on monomer composition (MCFP) of nonribosomal peptides (NRPs) has been introduced. MCFP is a novel method for obtaining a representative description of NRP structures from their monomer composition in a fingerprint form. An effective screening and prediction of biological activities has been obtained from Norine NRPs database. In this paper, we present an extension of the MCFP fingerprint. This extension is based on adding few columns into the fingerprint; representing monomer clusters, 2D structures, peptide categories, and peptide diversity. All these data have been extracted from the NRP structure. Experiments with Norine NRPs database showed that the extended MCFP, that can be called Monomer Structure FingerPrint (MSFP) produced high prediction accuracy (> 95%) together with a high recall rate (86%) obtained when MSFP was used for prediction and similarity searching. From this study it appeared that MSFP mainly built from monomer composition can substantially be improved by adding more columns representing useful information about monomer composition and 2D structure of NRPs.
               
Click one of the above tabs to view related content.