LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of plasmonic half-adder and half-subtractor circuits employing nonlinear effect in Mach–Zehnder interferometer

Photo from wikipedia

Plasmonic metal–insulator–metal (MIM) waveguides have the unique attribute of propagating surface plasmons beyond the diffraction limit. In this paper, basic designs for half-adder and half-subtractor circuits are proposed based on… Click to show full abstract

Plasmonic metal–insulator–metal (MIM) waveguides have the unique attribute of propagating surface plasmons beyond the diffraction limit. In this paper, basic designs for half-adder and half-subtractor circuits are proposed based on the nonlinear effect in Mach–Zehnder interferometers designed using plasmonic MIM waveguides. The proposed devices are studied in the third optical communications window with transverse magnetic polarization. The designs are verified by the finite-difference time-domain technique with the help of MATLAB simulations.

Keywords: subtractor circuits; half; nonlinear effect; half adder; half subtractor; adder half

Journal Title: Journal of Computational Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.