LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toward reliable RRAM performance: macro- and micro-analysis of operation processes

Photo by jordanmcdonald from unsplash

Resistive random access memory (RRAM) technology promises superior performance and scalability while employing well-developed fabrication processes. Conductance in insulating oxides employed in RRAM devices can be strongly affected by atomic-level… Click to show full abstract

Resistive random access memory (RRAM) technology promises superior performance and scalability while employing well-developed fabrication processes. Conductance in insulating oxides employed in RRAM devices can be strongly affected by atomic-level changes that makes cell switching properties extremely sensitive to operation conditions inducing local structural modifications. This opens an opportunity to condition the memory cell stack by forming a conductive filament capable of high frequency, low energy switching. Certain materials with pre-existing conductive paths, in particular some polycrystalline oxides, like hafnia, are shown to respond well to this approach. For this class of materials, the concept of ultra-fast pulse technique as an ultimate method for assessing RRAM switching capabilities in circuitry operations is discussed. Hafnia-based cells demonstrate compliance-free (1R) forming with no current overshoot, low operation currents, and reduced variability.

Keywords: reliable rram; rram performance; toward reliable; operation; rram

Journal Title: Journal of Computational Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.