LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Updated structure of vertical double-diffused MOSFETs for irradiation hardening against single events

Photo from wikipedia

The gate oxide layer and parasitic bipolar junction transistor are inherent elements of vertical double-diffused power metal–oxide–semiconductor field-effect transistors (MOSFETs). Single-event gate rupture (SEGR) and single-event burnout (SEB) may be… Click to show full abstract

The gate oxide layer and parasitic bipolar junction transistor are inherent elements of vertical double-diffused power metal–oxide–semiconductor field-effect transistors (MOSFETs). Single-event gate rupture (SEGR) and single-event burnout (SEB) may be triggered by penetration of energetic ions through sensitive regions of such MOSFET devices when used in space environments. Based on the recombination mechanism in a heavily doped P+ buried layer and the higher breakdown voltage when using a thick oxide layer, a new structure for power MOSFETs that are irradiation hardened against SEGR and SEB was developed in this work, based on three typical characteristics: an N+ buried layer, a P+ buried layer, and a thick oxide above the neck. The results reveal that the safe operation region of such an N-channel power MOSFET in a single-event irradiation environment is enhanced by 300 % for a linear energy transfer value of 98 MeV cm2/mg. Such structures could be widely used when designing single-event irradiation-hardened power MOSFETs.

Keywords: layer; power; single event; vertical double; double diffused; mosfets irradiation

Journal Title: Journal of Computational Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.