LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An ultra-sensitive gas nanosensor based on asymmetric dual-gate graphene nanoribbon field-effect transistor: proposal and investigation

Photo by von_co from unsplash

In this paper, a new ultra-sensitive gas nanosensor based on an asymmetric dual-gate graphene nanoribbon field-effect transistor (ADG GNRFET) is proposed. The performance of the proposed gas nanosensor is examined… Click to show full abstract

In this paper, a new ultra-sensitive gas nanosensor based on an asymmetric dual-gate graphene nanoribbon field-effect transistor (ADG GNRFET) is proposed. The performance of the proposed gas nanosensor is examined using an atomistic quantum simulation based on the mode space non-equilibrium Green’s function approach, self-consistently coupled to a two-dimensional Poisson’s equation in the ballistic limit. The gas-induced change in work function of sensitive gates is considered as a sensing mechanism, where the threshold voltage shift is taken as a sensing metric. The sensitivity analysis has shown that the gas-induced shift in threshold voltage can be significantly increased by decreasing the ratio of top-oxide capacitance to that of back-oxide, to less than unity. Moreover, the length and width of graphene nanoribbon are found independent of sensor sensitivity. The possibility of reaching ultra-high sensitivities at the nanoscale domain using the proposed ADG GNRFET-based gas sensor makes it an exciting alternative to the conventional FET-based gas sensors.

Keywords: gas; gas nanosensor; ultra sensitive; graphene nanoribbon

Journal Title: Journal of Computational Electronics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.