Impinging jet is a method for attaining high convective heat transfer coefficients and so increasing the heat transfer from cooling surfaces. In this work, improvement in the heat transfer from… Click to show full abstract
Impinging jet is a method for attaining high convective heat transfer coefficients and so increasing the heat transfer from cooling surfaces. In this work, improvement in the heat transfer from copper plate patterned surfaces having high heat flux depending on developing technologies in order to solve increased thermal load problem of the electronic equipments such as microchips are numerically examined by using an impingement jet technique. Five different patterned surfaces as reverse and straight circles are placed inside rectangular channels consisting of one open and three blocked sides. Governing 3D Navier–Stokes and energy equations as steady are solved by using Ansys Fluent software program with k-e turbulence model. Air used as jet fluid has 300-K inlet temperature. A constant heat flux of 1000 W/m2 is implemented to the patterned surfaces while top and side surfaces are adiabatic. The study is conformed for different Re numbers ranging from 4000 to 10000 and different jet-to-plate distances (H/Dh) from 4 to 12 for two different surface configurations. The numerical results are agreed well with numerical and experimental studies existed in the literature. The results are presented as mean Nu numbers and surface temperature variations for each of the analyzed patterned surfaces. The velocity and temperature contours and jet flow streamline distributions are assessed for different Re numbers and H/Dh ratios. For Re = 10000 and H/Dh = 12, the mean Nu number value on the straight-circle-patterned surfaces is 24.13% higher than that of the reverse-circle-patterned.
               
Click one of the above tabs to view related content.