The quantum-dot cellular automata (QCA) is considered to be one of the ground-breaking nanotechnologies developed over the last two decades. A layered T (LT) logic cell library is constructed herein,… Click to show full abstract
The quantum-dot cellular automata (QCA) is considered to be one of the ground-breaking nanotechnologies developed over the last two decades. A layered T (LT) logic cell library is constructed herein, and the methodology is extended to generic adder and subtractor module designs. The two proposed algorithms lead to more efficient QCA layout designs for an n-bit ripple carry adder (RCA) and subtractor based on an effective clock zone assignment approach. The suggested one-, four-, and eight-bit RCAs and subtractors surpass most of their existing counterparts by offering lower effective area and cell complexity. A comparative analysis is presented regarding the complexity, irreversible power dissipation, and Costα of the proposed n-bit layouts from a cost estimation purview.
               
Click one of the above tabs to view related content.