LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel deep gate power MOSFET in partial SOI technology for achieving high breakdown voltage and low lattice temperature

Photo from wikipedia

We propose a novel deep gate lateral double diffused metal-oxide-semiconductor (LDMOS) field-effect transistor in partial silicon-on-insulator (PSOI) technology for achieving high breakdown voltage and reduced power dissipation. In the proposed… Click to show full abstract

We propose a novel deep gate lateral double diffused metal-oxide-semiconductor (LDMOS) field-effect transistor in partial silicon-on-insulator (PSOI) technology for achieving high breakdown voltage and reduced power dissipation. In the proposed device, an N+ well is inserted in the buried oxide under the drain region. By optimizing the N+ well and the lateral distance between the buried oxide and the left side of the device, the electric field is modified. Therefore, the breakdown voltage improves. Also, the PSOI technology used in the proposed structure has a significant effect on reducing the lattice temperature. Our simulation results show that the proposed structure improves the breakdown voltage by about 67.5% and reduces the specific on-resistance by about 20% in comparison with a conventional LDMOS.

Keywords: breakdown voltage; voltage; deep gate; technology achieving; novel deep

Journal Title: Journal of Computational Electronics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.