LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved magnetic properties of bismuth ferrite ceramics by La and Gd co-substitution

Photo from archive.org

Increased magnetic properties of La and Gd substituted bismuth ferrite (Bi0.9La0.1Fe1-xGdxO3) (BLFGO) ceramics are reported. Considering perovskite structure of bismuth ferrite (BiFeO3), Bi and Fe sites were partially substituted by… Click to show full abstract

Increased magnetic properties of La and Gd substituted bismuth ferrite (Bi0.9La0.1Fe1-xGdxO3) (BLFGO) ceramics are reported. Considering perovskite structure of bismuth ferrite (BiFeO3), Bi and Fe sites were partially substituted by La and Gd, respectively. These materials were synthesized by conventional solid state reaction method. Crystal structure and phase purity were confirmed by X-ray diffraction and Raman scattering spectroscopy at room temperature. A considerable improved ferromagnetic properties with double remnant magnetization of 0.184 emu/g was observed by increasing Gd ratio up to 5%. With different ionic sizes and due to magnetic moment of Gd, an induced deformation of spin cycloid structure had thereby resulted in net magnetization. Also, we monitor some decrease in dielectric loss upon La and Gd substitutions. Additionally, these ceramics showed significant magnetoelectric coupling. Such improvements on magnetic, insulation, and magnetoelectric properties demonstrated the potential of BLFGO for possible multiferroic device applications.

Keywords: improved magnetic; magnetic properties; ferrite ceramics; ceramics substitution; bismuth ferrite; properties bismuth

Journal Title: Journal of Electroceramics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.