Nowadays, micro-scale piezoelectric devices with high sensitivity are much in demand for transducer technologies. This work suggests a low cost technology consisting of a screen-printing process associated with a sacrificial… Click to show full abstract
Nowadays, micro-scale piezoelectric devices with high sensitivity are much in demand for transducer technologies. This work suggests a low cost technology consisting of a screen-printing process associated with a sacrificial layer for preparation of microceramic-disks. These printed microdisks are based on a PZT layer sandwiched between two printed electrodes. The printed microdisks can be released from substrates by co-firing, leading to a complete decomposition of the sacrificial layer. The effect of different electrode materials (Au and Ag/Pd) on the releasing behavior is described. Uniform releasing is obtained by Ag/Pd electrodes whereas Au electrodes perform partial sticking on the substrates. Furthermore, the printed microdisks made of different PZT particle sizes are compared in terms of microstructure, electromechanical, and dielectric properties. The dense microdisks obtained from nanometric PZT particles and Ag/Pd electrodes generate high values of effective electromechanical coupling coefficient (45%) and relative permittivity (1200). Therefore, these printed microdisks are considered to be potential candidates for different sensing and actuating applications.
               
Click one of the above tabs to view related content.