LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data

Photo by heftiba from unsplash

In this paper, a multi-objective uniform-diversity genetic programming (MUGP) algorithm deployed for robust Pareto modeling and prediction of complex nonlinear processes using some input-output data table. The uncertainties included in… Click to show full abstract

In this paper, a multi-objective uniform-diversity genetic programming (MUGP) algorithm deployed for robust Pareto modeling and prediction of complex nonlinear processes using some input-output data table. The uncertainties included in measured data are considered to obtain more robust models. The considered benchmarks are an explosive cutting and forming processes, in which the nonlinear behavior between the input and output of processes are detected using MUGP. For both case studies, a multi-objective modeling and prediction procedure firstly performed using deterministic data. Secondly, the same identification procedure carried out using probabilistic uncertainty in the experimental input-output data. The objective functions considered are namely, training error, prediction error and number of tree nodes (complexity of models) in the deterministic approach. Accordingly, the mean and standard deviation of training error and prediction error are considered in robust Pareto modeling and prediction of such processes. In this way, Pareto front of such modeling and prediction is first obtained for both explosive cutting and forming processes with deterministic data. Such Pareto front is then obtained using experimental input-output-data having probabilistic uncertainty in input parameters through a Monte Carlo simulation (MCS) approach. In addition, it has been shown that for both cases, the trade-off models obtained from deterministic data have significant biases when tested on data with probabilistic uncertainty. Finally, the obtained results of such multi-objective robust model identification show promising results in terms of compensating uncertainty in the experimental input-output-data.

Keywords: uncertainty; input output; multi objective; probabilistic uncertainty; prediction

Journal Title: Journal of Intelligent Manufacturing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.