LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel approach for bearing remaining useful life estimation under neither failure nor suspension histories condition

Photo by rocinante_11 from unsplash

Remaining useful life prediction methods are extensively researched based on failure or suspension histories. However, for some applications, failure or suspension histories are hard to obtain due to high reliability… Click to show full abstract

Remaining useful life prediction methods are extensively researched based on failure or suspension histories. However, for some applications, failure or suspension histories are hard to obtain due to high reliability requirement or expensive experiment cost. In addition, some systems’ work condition cannot be simulated. According to current research, remaining useful life prediction without failure or suspension histories is challenging. To solve this problem, an individual-based inference method is developed using recorded condition monitoring data to date. Features extracted from condition data are divided by adaptive time windows. The time window size is adjusted according to increasing rate. Features in two adjacent selected windows are regarded as the inputs and outputs to train an artificial neural network. Multi-step ahead rolling prediction is employed, predicted features are post-processed and regarded as inputs in the next prediction iteration. Rolling prediction is stopped until a prediction value exceeds failure threshold. The proposed method is validated by simulation bearing data and PHM-2012 Competition data. Results demonstrate that the proposed method is a promising intelligent prognostics approach.

Keywords: failure suspension; suspension histories; prediction; remaining useful

Journal Title: Journal of Intelligent Manufacturing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.