LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Branch pipe routing based on 3D connection graph and concurrent ant colony optimization algorithm

Photo from wikipedia

Pipe routing, in particular branch pipes with multiple terminals, has an important influence on product performance and reliability. This paper develops a new rectilinear branch pipe routing approach for automatic… Click to show full abstract

Pipe routing, in particular branch pipes with multiple terminals, has an important influence on product performance and reliability. This paper develops a new rectilinear branch pipe routing approach for automatic generation of the optimal rectilinear branch pipe routes in constrained spaces. Firstly, this paper presents a new 3D connection graph, which is constructed by extending a new 2D connection graph. The new 2D connection graph is constructed according to five criteria in discrete Manhattan spaces. The 3D connection graph can model the 3D constrained layout space efficiently. The length of pipelines and the number of bends are modeled as the optimal design goal considering the number of branch points and three types of engineering constraints. Three types of engineering constraints are modeled by this 3D graph and potential value. Secondly, a new concurrent Max–Min Ant System optimization algorithm, which adopts concurrent search strategy and dynamic update mechanism, is used to solve Rectilinear Branch Pipe Routing optimization problem. This algorithm can improve the search efficiency in 3D constrained layout space. Numerical comparisons with other current approaches in literatures demonstrate the efficiency and effectiveness of the proposed approach. Finally, a case study of pipe routing for aero-engines is conducted to validate this approach.

Keywords: pipe routing; connection graph; branch; pipe; branch pipe

Journal Title: Journal of Intelligent Manufacturing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.