For double-sided circuit boards, a wave soldering carrier is generally used to shield the devices mounted on the surface of the first side of the printed circuit board (PCB), so… Click to show full abstract
For double-sided circuit boards, a wave soldering carrier is generally used to shield the devices mounted on the surface of the first side of the printed circuit board (PCB), so that the solder joints are not melted again through exposure to tin wave, causing the devices to deviate or fall as a result of flushing. However, carrier adoption increases production costs. This study proposes a glue-dispensing process to replace the wave soldering carrier. In addition, glue curing and reflow soldering were performed simultaneously to enhance production efficiency. An ecofriendly glue-dispensing process using low-cost CEM-1 substrates and a glue materials featuring a low curing temperature helps reduce energy consumption and carbon emissions. The Taguchi method was used to plan and execute this experiment. The quality characteristics of assembly reliability and manufacturing costs were considered in terms of glue thrust strength and per-PCB manufacturing cost, respectively. An intelligent parametric design applying PCA statistical methods and artificial neural networks (ANN) model was proposed. Results of a confirmation test indicated that the optimal parameter combination suggested by the ANN model was superior. The most satisfactory procedure parameter combination obtained comprised GMIR-130HF for the glue material, a curing temperature of $$140\,^{\circ }\hbox {C}$$140∘C, a 1.1 m/min conveyor velocity, and a 0.09 Mpa dispensing pressure.
               
Click one of the above tabs to view related content.