LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Remarkably promoted low-temperature reducibility and thermal stability of CeO2–ZrO2–La2O3–Nd2O3 by a urea-assisted low-temperature (90 °C) hydrothermal procedure

Photo from wikipedia

Conventional co-precipitation combined with a urea-assisted low-temperature (90 °C) hydrothermal procedure (CZU) and the same method without urea (CZ) were used to prepare material CeO2–ZrO2–La2O3–Nd2O3. X-ray diffraction, Raman, nitrogen adsorption–desorption, transmission… Click to show full abstract

Conventional co-precipitation combined with a urea-assisted low-temperature (90 °C) hydrothermal procedure (CZU) and the same method without urea (CZ) were used to prepare material CeO2–ZrO2–La2O3–Nd2O3. X-ray diffraction, Raman, nitrogen adsorption–desorption, transmission electron microscope, hydrogen-temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy were employed to study the structural, textural, reduction behavior and surface elemental composition of the materials. The results reveal that, compared to CZ, CZU exhibits more outstanding structural property, higher thermal stability and higher low-temperature reducibility. The results also show that the stability of the reduction behavior is closely related to its surface chemical properties, especially the variation of the surface atomic ratio of Ce/Zr and the surface oxygen species. The possible mechanism of urea was also discussed in this study. In addition, with regard to corresponding Pd-only three-way catalysts, remarkably boosted catalytic performance of Pd/CZU is also obtained than that of Pd/CZ, and which suggests that CZU holds better prospective applications.

Keywords: assisted low; low temperature; temperature; temperature hydrothermal; hydrothermal procedure; urea assisted

Journal Title: Journal of Materials Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.