LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High sinterability nano-Y2O3 powders prepared via decomposition of hydroxyl-carbonate precursors for transparent ceramics

Photo by taylorheeryphoto from unsplash

High sinterability nano-Y2O3 powders for transparent ceramics were successfully synthesized via the decomposition of hydroxyl-carbonate precursors from spray coprecipitation. The chemical composition of the precursor was determined as Y(CO3)(OH)·nH2O (n = 1–1.5),… Click to show full abstract

High sinterability nano-Y2O3 powders for transparent ceramics were successfully synthesized via the decomposition of hydroxyl-carbonate precursors from spray coprecipitation. The chemical composition of the precursor was determined as Y(CO3)(OH)·nH2O (n = 1–1.5), and it was evolved into Y2O3 particles with clear facets after calcination with the assistance of sulfate. Two dispersion mechanisms, “absorption” and “intercalation,” were proposed to work together to provide the dispersion effect. Microstructural and optical characterization of powders and as-fabricated transparent ceramics was employed to evaluate the sintering behavior of powders. The nanopowders calcined at 1250 °C had weakly agglomerated morphology with the mean particle size of ~140 nm and exhibited excellent sinterability. The in-line transmittance of Y2O3 ceramic of 1 mm thickness that was vacuum sintered at 1800 °C for 8 h without any sintering additives reached 78.7% at 1064 nm.

Keywords: transparent ceramics; sinterability nano; sinterability; nano y2o3; high sinterability

Journal Title: Journal of Materials Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.