LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of CuO nanoparticles coated bacterial nanowire film for a high-performance electrochemical conductivity

Photo from wikipedia

Highly dispersed copper oxide nanoparticles (CuO NPs) with the dimensions from 3 to 5 nm have been effectively synthesized by simple precipitation method of copper acetate precursor at 80 °C. UV–visible spectrophotometer,… Click to show full abstract

Highly dispersed copper oxide nanoparticles (CuO NPs) with the dimensions from 3 to 5 nm have been effectively synthesized by simple precipitation method of copper acetate precursor at 80 °C. UV–visible spectrophotometer, fourier transform infrared, X-ray diffraction, atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscope (HRTEM) technique had been used for the structural characterization of CuO NPs. The CuO NPs are extremely dense, uniform and exhibited excellent crystalline array structure. In this present study, CuO NPs were successfully coated on the bacterial nanowires via electrodeposition process and further characterized structurally using HRTEM. The conductivity of bacterial nanowires and CuO NPs coated bacterial nanowires was measured using cyclic voltmeter and electrochemical impedance spectroscopy. The bacterial nanowires exhibited the polarization resistance (Rp) to be about 4044.5 Ω, and CuO NPs coated bacterial nanowires polarization resistance (Rp) was 2618.6 Ω. It was concluded that the improved conductivity of CuO NPs coated bacterial nanowires provides a promising lead for its potential application in sensor and nanodevices.

Keywords: bacterial nanowires; cuo; coated bacterial; microscopy; conductivity; cuo nps

Journal Title: Journal of Materials Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.