LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strong re-entrant cellular structures with negative Poisson’s ratio

Photo from wikipedia

In this paper, two new 2D re-entrant topologies with negative Poisson’s ratio are presented and their mechanical properties (Poisson’s ratio and energy absorption capacity) are studied using finite element method… Click to show full abstract

In this paper, two new 2D re-entrant topologies with negative Poisson’s ratio are presented and their mechanical properties (Poisson’s ratio and energy absorption capacity) are studied using finite element method as a function of geometric parameters. The first topology (model 1) was constructed by adding two sinusoidal-shaped ribs into the classical re-entrant topology, while the second topology (model 2) was made by introducing extra vertical ribs to reinforce the sinusoidal-shaped ribs. Simulation results show that model 1 and model 2 topologies can reach a minimum value in Poisson’s ratio of − 1.12 and − 0.58 with an appropriate geometric aspect ratio, respectively. The energy absorption capacities of model 1, model 2 and classical re-entrant model were studied at various compression velocities. Enhanced energy absorption capacities were observed in the two new re-entrant topologies compared with the classical re-entrant topology. Model 2 exhibited the highest energy absorption capacity and a highest plateau stress. The plateau stress of model 1 was about half that of model 2, and when the compression velocity is more than 20 m/s, the plateau stress of model 1 became lower than that of the classical re-entrant model.

Keywords: topology; model; negative poisson; poisson ratio

Journal Title: Journal of Materials Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.