LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The performance of phosphoric acid in the preparation of activated carbon-containing phosphorus species from rice husk residue

Photo from wikipedia

The performance of phosphoric acid (H3PO4) in the preparation of activated carbon-containing phosphorus species (P-species) using rice husk residues as feedstock was studied. In the activation process, the consequent pretreatments… Click to show full abstract

The performance of phosphoric acid (H3PO4) in the preparation of activated carbon-containing phosphorus species (P-species) using rice husk residues as feedstock was studied. In the activation process, the consequent pretreatments by NaOH and HCl, respectively, remove the silica and ash thoroughly, which led to cracks and pore opening. While H3PO4 acting as activation regent interacted with the phenolic and carbonyl groups of activated carbon, forming P-containing carbonaceous species (such as C–O–P), which further promoted the development of micropore of the activated carbon and then increased the surface area, H3PO4 also acted as catalyst to adjust and control the texture properties and structures of activated carbon. The activated carbon (PC-2.5) prepared at 500 °C for 2 h using H3PO4-treated carbon residue with acid/carbon mass ratio of 2.5 (g/g) achieved the maximum surface area of 1365 m2/g. Interestingly, the P-species formed in the activated carbon exhibited high-efficiency catalytic effects for the treatment of municipal waste landfill leachate to a disposable quality, where the removal rate of pollutant from landfill leachate over 90% and a high removal of TN (84%), COD (82%) and NH4+–N (100%) were obtained.

Keywords: carbon; preparation activated; phosphoric acid; carbon containing; performance phosphoric; activated carbon

Journal Title: Journal of Materials Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.