LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Elasticity and internal friction of magnesium alloys at room and elevated temperatures

Photo from archive.org

Elastic moduli (Young’s modulus, shear modulus and bulk modulus) of three ultrafine-grained Mg-based alloys AZ31, AE42 and LAE442 were studied by resonant ultrasound spectroscopy. Evolution of these moduli and the… Click to show full abstract

Elastic moduli (Young’s modulus, shear modulus and bulk modulus) of three ultrafine-grained Mg-based alloys AZ31, AE42 and LAE442 were studied by resonant ultrasound spectroscopy. Evolution of these moduli and the corresponding high-frequency internal friction were measured in a temperature cycle between the room temperature and 310 °C, i.e., with heating above the recrystallization threshold temperature. The results reveal that the Li content in the LAE442 alloy has a strong impact on its elastic performance, resulting in a high E/ρ ratio, which is consistent with predictions of ab initio calculations. Simultaneously, the relaxation due to grain boundary sliding has significantly lower activation energy in LAE442 alloy.

Keywords: friction; internal friction; friction magnesium; magnesium alloys; room; elasticity internal

Journal Title: Journal of Materials Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.