LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamic properties of Ag–Au–Pd alloys measured by a solid-state EMF method

Photo from wikipedia

Although the Ag–Au–Pd system is crucial for several industrial applications and for the research on fundamental physics, no thermodynamic data on this ternary system at low temperatures have been reported… Click to show full abstract

Although the Ag–Au–Pd system is crucial for several industrial applications and for the research on fundamental physics, no thermodynamic data on this ternary system at low temperatures have been reported in the literature. In the present study, activities of silver are directly measured by employing a solid-state EMF method, by using AgI as the solid electrolyte. The EMF was determined using a galvanic cell $$ \left( - \right){\text{Pt}}\left| {\text{C}} \right.\left| {\text{Ag}} \right|{\text{AgI}}\left| {{\text{Ag-Au-Pd alloy}}} \right|{\text{C}}\left| {{\text{Pt}}\left( + \right)} \right. $$-PtCAgAgIAg-Au-Pd alloyCPt+, which produced novel experimental data on the thermodynamic properties of Ag–Au–Pd alloys. Darken method was used to calculate integral excess thermodynamic properties from the data. New thermodynamic characteristics, such as integral excess mixing Gibbs energy, entropy and enthalpy of the Ag–Au–Pd alloys, have been generated in a temperature range of 475 and 675 K. Isoactivity lines of silver in the system have been drawn throughout the Gibbs triangle. Thermodynamic properties of the binary Au–Pd alloys have been compared with the previous investigations.

Keywords: solid state; thermodynamic properties; emf method; state emf; emf

Journal Title: Journal of Materials Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.