AbstractSingle-ion conducting polymers have been widely reported in the literature as solid polymer electrolytes, but their low ionic conductivity has limited industrial applications at ambient temperature. Here, we employed a… Click to show full abstract
AbstractSingle-ion conducting polymers have been widely reported in the literature as solid polymer electrolytes, but their low ionic conductivity has limited industrial applications at ambient temperature. Here, we employed a perfluoroalkyl sulfonamide-based single-ion conducting polymer-lithiated poly(perfluoroalkylsulfonyl)imide (LiPFSI) to promote the migration of free Li-ions and diminish cell polarization in lithium-ion batteries. After blending with Al2O3 powder, the LiPFSI/Al2O3 composite was coated on a commercial polyethylene separator. Adding the high surface energy of Al2O3 particles and the exceptional ionic conductivity of LiPFSI resulted in a LiPFSI/Al2O3 composite-coated separator with excellent wettability and low impedance. A LiFePO4/Li half-cell with this separator showed a highly improved charge–discharge cyclability up to 130 mAh/g that maintained 98% retention of the original reversible capacity after 220 charge–discharge cycles at a high current rate of 2 C (1 C = 170 mAh/g). Even at a high rate of 5 C, the cell capacity could be maintained above 100 mAh/g. Herein, we present a simple and effective method to optimize the separator with the LiPFSI/Al2O3 composite and thus improve the high rate charge–discharge performance of Li-ion batteries.
               
Click one of the above tabs to view related content.