LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid mechanochemical synthesis of nanostructured mohite Cu2SnS3 (CTS)

Photo from archive.org

Rapid solvent-free mechanochemical synthesis of CTS nanocrystals from elemental precursors is reported herein. The process is completed in 15 min, proceeding through immediate formation of CuS in a self-sustaining manner and… Click to show full abstract

Rapid solvent-free mechanochemical synthesis of CTS nanocrystals from elemental precursors is reported herein. The process is completed in 15 min, proceeding through immediate formation of CuS in a self-sustaining manner and its subsequent reaction with Sn and residual sulfur. The reaction progress was monitored by pressure and temperature changes in the milling vessel, X-ray diffraction, Soxhlet analysis, grain size analysis and electric resistivity measurements. The relationship between the consumption of metallic precursors, grain size and electrical resistivity is provided. The final product was nanocrystalline with crystallite size below 10 nm, as confirmed by both X-ray diffraction and transmission electron microscopy. The nanocrystals are agglomerated into micrometer-sized grains. It exhibits poor porous properties with the specific surface area value of 2.5 m2/g. The X-ray photoelectron spectroscopy has shown that the surface is significantly oxidized, due to milling in air. The optical properties of the prepared CTS nanocrystals are interesting for photovoltaic applications.

Keywords: rapid mechanochemical; mohite cu2sns3; nanostructured mohite; mechanochemical synthesis; synthesis nanostructured; synthesis

Journal Title: Journal of Materials Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.