LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic scaling of internal bias field in Mn-doped 0.24Pb(In1/2Nb1/2)O3–0.42Pb(Mg1/3Nb2/3)O3–0.34PbTiO3 ferroelectric ceramic

Photo from wikipedia

The influences of temperature, electric field, and frequency on the internal bias field Ei have been investigated in poled and aged Mn-doped 0.24Pb(In1/2Nb1/2)O3–0.42Pb(Mg1/3Nb2/3)O3–0.34PbTiO3 ferroelectric ceramic. It was found that Ei… Click to show full abstract

The influences of temperature, electric field, and frequency on the internal bias field Ei have been investigated in poled and aged Mn-doped 0.24Pb(In1/2Nb1/2)O3–0.42Pb(Mg1/3Nb2/3)O3–0.34PbTiO3 ferroelectric ceramic. It was found that Ei decreases with temperature T and electric field amplitude E0, but increases with frequency f. The relaxation behavior of the internal bias field is related to the redistribution of preferentially oriented defect dipoles. Based on our results, scaling relations of Ei on temperature, electric field, and frequency were established in both rhombohedral and tetragonal phases, which provide the foundation for making “harder” piezoelectric materials through point defect engineering in order to meet the demand of high-power piezoelectric device applications.

Keywords: doped 24pb; bias field; field; 24pb in1; internal bias

Journal Title: Journal of Materials Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.