LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water

Photo by viazavier from unsplash

Heavy metal pollution is one of the most serious environmental problems, posing threats to human health. Here, we developed a magnetic hybrid aerogel by integrating nanocellulose and ferroferric oxide (Fe3O4)… Click to show full abstract

Heavy metal pollution is one of the most serious environmental problems, posing threats to human health. Here, we developed a magnetic hybrid aerogel by integrating nanocellulose and ferroferric oxide (Fe3O4) nanoparticles for effectively adsorbing heavy metal ions from water and realizing controllable recovery under magnetic condition. The magnetic behavior and adsorbing capacity of the hybrid aerogel on removal of heavy metal chromium (Cr)(VI) ion were examined. Results show that the ferroferric oxide nanoparticles physically adsorb the nanocellulose, each of which retains the original composition and structural characteristics. The magnetic hybrid aerogel possesses good ferromagnetic property with saturation magnetization value of 53.69 emu/g, enabling effective and controllable recovery of the aerogel under magnetic condition The adsorption efficiency of the hybrid aerogel on the Cr(VI) ion reaches the highest value of 2.2 mg/g when the mass ratio of the nanocellulose to ferroferric oxide nanoparticle is 1:1. Additionally, the hybrid aerogel presents similar adsorption behavior on plumbum (Pb)(II) and copper (Cu)(II) ions, suggesting extended applications of the hybrid aerogel on removal of heavy metal ions. Such strategy could provide new applications for the abundant nanocellulose resources and could be extended to integrate nanocellulose with other functional nanomaterials into novel hybrid aerogel for water purification.

Keywords: magnetic hybrid; metal ions; hybrid aerogel; heavy metal

Journal Title: Journal of Materials Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.