The epitaxial growth of InGaN/GaN light-emitting diodes (LEDs) with high-indium (In) content on Si (100) substrate faces significant challenges. The study described in this paper focuses on semipolar yellow InGaN/GaN… Click to show full abstract
The epitaxial growth of InGaN/GaN light-emitting diodes (LEDs) with high-indium (In) content on Si (100) substrate faces significant challenges. The study described in this paper focuses on semipolar yellow InGaN/GaN LEDs formed on a triangular-striped Si (100) substrate by metal organic chemical vapor deposition. By controlling the growth temperature of InGaN to modulate the In content of InGaN/GaN multiple quantum wells (MQWs), high-In-content InGaN/GaN MQWs were grown on semipolar ($$ 1\bar{1}01 $$11¯01) planes at relatively low temperatures. Consequently, InGaN/GaN MQW LEDs grown on triangular-striped substrates produce emissions ranging from red to yellow under different injection currents. In particular, when the injection current exceeds 160 mA, the LEDs achieve stable yellow emission. This is the first time such a long waveband emission has been achieved in semipolar InGaN/GaN LEDs formed on Si (100) substrate.
               
Click one of the above tabs to view related content.