LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The influence of artificial aging on the microstructure and hardness of an Al–Zn–Mg–Zr alloy processed by equal-channel angular pressing

Photo from wikipedia

The effect of artificial aging on the microstructure and hardness of an ultrafine-grained (UFG) Al–4.8%Zn–1.2%Mg–0.14%Zr (wt%) alloy was studied. The UFG microstructure with an average grain size of about 260 nm… Click to show full abstract

The effect of artificial aging on the microstructure and hardness of an ultrafine-grained (UFG) Al–4.8%Zn–1.2%Mg–0.14%Zr (wt%) alloy was studied. The UFG microstructure with an average grain size of about 260 nm was obtained by severe plastic deformation applying four passes of equal-channel angular pressing (ECAP) at room temperature. Then, artificial aging was performed on the ECAP-processed samples at 120 °C and 170 °C for 2 h. In the ECAP-processed sample Guinier–Preston (GP) zones, MgZn2 precipitates and a high dislocation density were observed. After aging at 120 °C, coarse MgZn2 precipitates were formed in the grain boundaries, leading to softening, while the dislocation density did not decrease. Annealing at 170 °C yielded a growth of the matrix grains to ~ 530 nm with a significant decrease in the dislocation density. In addition, GP zones disappeared and MgZn2 precipitates were formed in both the grain interiors and the boundaries. This overaging of the precipitate structure and the decrease in the dislocation density resulted in a lower hardness than after annealing at 120 °C. It was found that the hardness reduction due to the change of the precipitate structure at 170 °C was higher than that caused by the decrease in the dislocation density.

Keywords: aging microstructure; dislocation density; artificial aging

Journal Title: Journal of Materials Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.